

ANIKET DHERE

aniketdhere.com · aniket.dhere@gmail.com · +1-980-313-1401 · linkedin.com/in/aniket-dhere ·

EDUCATION

University of North Carolina at Charlotte
Master of Science Electrical Engineering, *GPA: 3.5*

Charlotte, NC, USA
Aug 2019 - May 2021

Savitribai Phule Pune University
Bachelor of Engineering Electronics and Telecommunication, *GPA: 61.99*

Pune, India
Aug 2014 - Dec 2018

EXPERIENCE

Nikola Corporation

Battery Systems Application Engineer

{Languages: MATLAB, C, C++}

Santa Ana, CA
Feb 2024 - Oct 2024

- Spearheaded the development of the next-gen **Battery Management System (BMS)** using **MATLAB**, aimed at deployment in Fuel Cell Electric Vehicles and Battery Electric Vehicles (**EVs**).
- Tested the features of the microcontroller, like **GPIO, ADC, PWM, SPI, and CAN**, to ensure proper board bring-up and readiness for the application, with the right pins configured.
- Wrote **multi-threaded RTOS**'s application layer (**FreeRTOS**) and integrated with the **device drivers**.
- Reviewed software requirements, ensuring alignment with **functional safety (FuSa - ISO26262)** standards, system specifications, and architectural guidelines.

Projen Technology Solutions LLP

Automation Engineer

{Languages: Python, C++}

Pune, India

Nov 2023 - Jan 2024

- Developed a pipeline leveraging a **multi-modal large language model** to automate mechanical piping design by extracting and processing data from technical drawings, improving efficiency and accuracy.

Romeo Power

Embedded Software Engineer

{Languages: C, C++, Python}

Vernon, CA

Jul 2021 - Jun 2023

- Enhanced the **FreeRTOS-based Battery Management System (BMS)** by delivering production-grade releases with performance optimizations and bug fixes, ensuring stability and reliability for critical applications. Error-proofed the pipeline to ensure right firmware is generated for **EV** clients.
- Engineered an innovative alert system within the **Battery Management System (BMS)** to detect potential thermal venting events; monitored performance under varied environmental conditions, ensuring compliance with industry standards; while keeping the response time under 2 minutes.
- Refactored existing **device drivers** to integrate an **ADC-based** temperature sensor communicating over **SPI**, implemented inter-task data transfer, and broadcasted messages via **CAN**.
- Collaborated with the systems team to develop software and documentation compliant with **ISO 26262** and **ASPICE** standards (ASIL Level C), ensuring adherence to industry benchmarks for functional safety and quality.
- Restructured and optimized the core **algorithms** of **State-Of-Charge (SOC)**, **State-Of-Power (SOP)**, and **State-Of-Health (SOH)** to streamline data collection and processing.
- Authored comprehensive **unit tests** to validate firmware functionality and ensure compliance with system requirements, which seamlessly integrated with **Jenkins** based **CI/CD** pipeline.

Soil Agritech Private Limited

Embedded Software Intern

{Languages: C++}

Bangalore, India

Feb 2019 - Apr 2019

- Prototyped a microcontroller development platform based on Texas Instruments' MSP430, aimed at simplifying development for school projects and educational purposes.
- Interfaced multiple sensors, including pulse/heartbeat sensors, fingerprint sensors, temperature sensors, MQ-3 gas sensors, and 3-axis accelerometers, with the U8g2 OLED display, enabling real-time data collection and visualization. Developed a science fiction Space Invader game on the U8g2 OLED screen, implementing joystick controls and enhancing interactive learning for educational projects.

ABU Asia-Pacific Robocon

Technical Lead of Robotics Club

{Languages: C}

Pune, India

Sept 2015 - May 2018

- Designed a 300W switch-mode power supply alongside MOSFET-based motor driver with PWM speed control, to handle high currents using Altium, and simulated using Proteus.
- Built data acquisition circuits and integrated sensors with microcontrollers (8bit, 16bit, 32bit) for precise real-time control.

PROJECTS

AI Smart Home {Python, TensorFlow, Node.js, React}	Jul 2024 - Present
<ul style="list-style-type: none">Improved a smart home automation system that integrates advanced AI-driven person detection and mood-based ambiance control.Deployed a web-based dashboard using Node.js, React, and Nginx server for real-time monitoring and control of the system.	
Music Genre Recognition {Python, TensorFlow}	Sept 2020 - Dec 2020
<ul style="list-style-type: none">Trained multi-architectural Deep Neural Networks to solve the problem of genre classification.Used TensorFlow to train the sampled music dataset (GTZAN) using Long Short-Term Memory RNN.	
Posture Detection {C++, Convolutional Neural Networks (CNN)}	Apr 2021 - May 2021
<ul style="list-style-type: none">Detected whether a person is sleeping, standing, walking or jumping using 3-axis accelerometer and convolutional neural networks on low power Arduino nano 33 BLE micro-controller.	
Accident Detection For Elderly {C, nesC}	Mar 2021 - May 2021
<ul style="list-style-type: none">Implemented a fall detection application in TinyOS, leveraging multitasking to transmit sensor data to the base station via multihop routing, within 100ms.	
Modified xv6 kernel for efficient memory management {C}	Jan 2020 - May 2020
<ul style="list-style-type: none">Cross-compiled Linux based xv6 operating system for RISC-V architecture using QEMU.Coded lazy page allocation, Copy-on-Write Fork for the operating system. Added support for user-level multi-threads & alarms, filesystem, UDP network sockets and device driver to the OS.	
Custom Linux Shell {C}	Nov 2019 - Jan 2020
<ul style="list-style-type: none">Wrote native linux commands from scratch like ls, pwd, cd, rm using system calls.	
Secure Encryption using ARM TrustZone Secure Boot Technology {C++}	Oct 2019 - Nov 2019
<ul style="list-style-type: none">Programmed Xilinx Zynq 7000 FPGA to use 256-bit AES encryption engine to encrypt and decrypt input string using ARM TrustZone Secure Boot.	
Smart Wheel Chair {C, Altium, Proteus}	Mar 2017 - May 2017
<ul style="list-style-type: none">Designed a wheelchair capable of carrying up to 80kg, featuring bidirectional motor control and speed regulation using a MOSFET-based driver, with wireless operation via mobile and HTTP protocols.	

SKILLS

Programming Languages:	Embedded C, C++, Python, bash, Matlab, Simulink
Operating Systems:	Linux, Embedded Linux, FreeRTOS, uCosII
Micro-controllers:	Infineon Triboard TC389, TI's TMS570, MSP430, ARM Cortex M3
Instruments & Tools:	Oscilloscope, Logic analyzer, JTAG, PCAN explorer, gdb, Segger J-Link
Documentation & Compliance:	Doxygen, JIRA, Jama, ISO26262, AUTOSAR , Misra C/C++, Git
Communication Protocols:	SPI, I2C, CAN, CAN-J1939, UART, HTTP, REST API
Machine Learning Frameworks:	Tensorflow, YOLO v9, FaceNet512
Web Development:	Javascript, Node.js, Nginx, Let's Encrypt, tailwindCSS, React